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On the vorticity of a rotating mixture 
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The centrifugal separation of an initially homogeneous mixture of particles and fluid 
is considered in ‘long’ containers for which end-wall effects are negligible. The 
vorticity produced in the mixture region during separation is shown to be a function 
of time only. As a consequence, the ‘full’ nonlinear theory in such containers, of 
arbitrary cross-section, can be reduced to the determination of an appropriate 
analytic function. A problem of technological interest is discussed. 

1. Introduction 
The theory for (centrifugal) separation of a fluid mixture is already extremely, 

almost prohibitively complex, although in important respects it is still incomplete 
and under development. Fundamental issues, both physical and mathematical in 
nature, remain to be resolved and among many noteworthy questions are those 
pertaining to the rheology of a non-dilute (rotating) mixture and the overall 
applicability of the continuum approximation for two-phase flows. There is a dearth 
of relevant experimental data and as yet no general numerical program for the 
motion of a viscous, incompressible mixture that is of proven accuracy and value. 
However, as recent work amply demonstrates (Acrivos & Herbolzheimer 1979 ; 
Greenspan & Ungarish 1985 ; Schneider 1982 ; Schaflinger, Koppl & Filipczak 1986), 
the present diffusion or mixture model can be used quite effectively to analyse 
difficult problems. The flow patterns predicted are often unexpected - involving 
complicated boundary layers, currents and kinematic shocks - but the results seem 
in good qualitative agreement with observations. This encouraging corroboration 
warrants the further development of the model to include mechanisms that 
characterize the non-dilute mixture, a distribution of particle sizes, and a description 
of particle collisions and cluster formation. Exact and physically relevant solutions 
of the equations of motion would be invaluable in this effort as a source of insight, 
a means to assess various processes, to craft simpler theories and ultimately to test 
the numerical programs that are forthcoming. Solutions for gravitational and 
centrifugal settling (Kynch 1952 ; Greenspan 1983) already serve this function ; 
others are to be presented here. 

The batch settling of an initially uniform mixture in a centrifugal force field is 
considered anew. A general result concerning vorticity in the mixture allows 
reduction of the problem for ‘long’ containers of arbitrary cross-section to the 
determination of an analytic function. Separation in sectioned centrifuges is one 
application of potential technological significance. 
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2. Formulation 

phase flows of particles and fluid is as follows: 
A fairly elaborate version of mixture theory currently used to study rotating, two- 

aP - + v * p u  = 0, 
at 

Conservation of mass : 

where P = Pc( l -a)+P,a,  

a is the volume fraction (and subscripts C,D refer to the continuous and discrete 
phases) ; 

Conservation of dispersed phase : 

Conservation of momentum : 

a ( l - a ) p C p D u  
R R ;  (2'3) 

p -++Vu-u+ (V x u )  x u + 2 8  x u + 8  x (8 x r )  (: 
= - V P + V . n - V .  

P 
Constitutive laws : 

1c = p(a) (VU + (VU)') + y (a )  v u 1;  (2.4) 

VR+pcSZD(a)( l+€a) p D p  ( % + 2 8 x u ,  at 1 
p' -" ( 1 -a) + $Vu - u + (V x u )  x u + 2 8  x u + 8 x (in x r )  ; (2 .5)  1 - - 

D@) Pc 

where D(a)  and /3 are given below. The theory may be cast in a dimensionless form 
that is appropriate for a variety of problems by the scaling rules, r + lr, t + t/SZR,, 
u + R, Qlu, u, --f JeJ,5QZuR, p ~ zpc Q212(R,p + tr'). The governing equations can then 
be written as 

where (2.1) and (2.2) have been combined; 

a(1-a) €a * 
(1 + €) v *- uR uR--k x (i x r ) ;  (2.8) 

P 2 € 2  
= - V p + E V * n - -  

RO 1 +ea RO 

- -- [R: (c'u++Vu- u +  (V x u )  x u + 2 R , i  x u + i  x (i x r )  . (2.9) 1 - 
ma) at 
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Here the Rossby number R, is selected to characterize the velocity deviation from 
rigid rotation, and 

(2.10) 

(In a typical application, c = 0.01, a = 0.001 em, vc = 0.01 cm2/s, SZ = 500 s-l, 
I = 10 cm, p = 0.01, E = 2 x lo-’. The particle Taylor number, p, though usually 
very small can be made O( 1 )  by controlling SZ in which case interesting phenomena 
can be expected.) 

An empirical formula for the viscosity coefficient that is typical of slow, relative 
motions between phases is as given by Ishii & Chawla (1979) 

D(a)  = 1-- i :Jr”””. (2.11) 

The accuracy of this formula requires inertial effects to be relatively unimportant 
and i t  is therefore consistent to neglect terms O(Ri) on the right-hand side of (2.9) 
since R, is itself small. Indeed, the equation so obtained is still more general than any 
used to date, perhaps too general given the state of experimental and theoretical 
knowledge of rapidly rotating mixtures. Terms multiplied by R, could also be 
discarded for the same reason but are kept for the time being in order to satisfy 
prescribed initial conditions and to account qualitatively for a decrease in centrifugal 
force due to a retrograde rotation of the fluid. Therefore, the constitutive law for the 
relative velocity is taken to be 

(1-a)s  
[2R,(R x v )  + R  x ( R  x r ) ] ,  

(2.12) 

a form which embodies the essential physics, allows some exploration of new effects 
and does not add very much complexity to the theoretical treatment. 

Initially the mixture is assumed to be uniform and quiescent so that 

a It+, = ao(a constant), u(r,  0) = 0 = vR(r ,  0). (2.13) 

The usual viscous-fluid boundary condition, u = 0, is imposed on the surface of the 
container, but it must be kept in mind that particles of finite size may indeed slip or 
roll on a solid wall, and discontinuities (kinetic shocks) will develop to separate the 
mixture from purified fluid or accumulated sediment. 

The batch separation problem consists then of equations (2.6)-(2.8) and (2.12) 
subject to  the foregoing initial and boundary conditions. 
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3. Vorticity in a rotating mixture 
The equation for mixture vorticity, 

o = v x v ,  

obtained from (2.8), is a rather formidable expression 

( l + e a ) R o ( z + V x ( o x v )  ao 

av + 2eVa x ( R  x v )  + 2( 1 + €a) Rv . v - 2( 1 +€a) - ax 

p22 a(1 -a) er 
= E V x V . x - - ( l + e ) V X V . -  v,v,---ix V a .  (3.1 a )  

R, 1 +ea R, 

A more useful formulation is in terms of the absolute vorticity c = 2R + R, o and the 
total pressure P = p+r2 /2R, ,  in which case i t  can be shown that 

V - n  
v x -  x V P + -  

E ($+v.V)(&)--  [.VV = +v 1 
1 +€a (1 + sa)2 l+ea 1+ea 

1 a(1-a) 
v x - v . -  v E v R .  (3 . lb)  

(1 + 6) p2e2 -_____ 
( l+ea)  R, l+ea l+ea 

Besides the usual vorticity generation mechanisms of line stretching, tilting and 
diffusion, the basic compressibility of a two-phase system, described by the volume 
fraction a, introduces baroclinic processes that are not often considered in mixture 
theory, although they constitute an essential aspect of dynamic meteorology. 

The spatial distribution and time variation of the particle volume fraction 
produces vorticity and a velocity field, the magnitude of which is scaled by an 
appropriate choice of the Rossby number R,. For example, in problems of batch 
settling from a uniform state, the balance of the first and fourth terms in (3.10,) 
(underlined) implies that  R, = O(e). However, if a t  time zero, a is a definite function 
of position then more typically R ,  = O(le1;) provided =I= 0. An initial azimuthal 
dependency causes significant generation of baroclinic vorticity while for a purely 
radial variation, alt,O = ao( r ) ,  R ,  = O(Ie1) once again. The transient evolutions are 
also very different in these cases. When a is not initially a constant, the volume 
fraction can develop a pronounced azimuthal stratification even though it may have 
none to start with; if a is a constant a t  the outset then a is strictly a time-dependent 
function thereafter. These matters are discussed in detail elsewhere, (Dahlkild & 
Greenspan 1987) ; in this work the focus is mainly on batch settling. 

Consider separation in a ‘ long ’ cylindrical centrifuge of arbitrary cross-section 
with flat endplates. In  this approximation, the secondary O(Ei) flows induced by the 
endwall Ekman layers are small compared to the circulations-produced directly by 
the centrifugal force. A relative measure of the mechanisms is given by 

h = Ei/lelpH, (3 .2)  
which is the ratio of the particle settling time to the viscous spin-up time in the 
centrifuge; ‘long’ implies h 4 1. (Here H is the aspect ratio of the cylinder, i.e. the 
length divided by the radius.) 
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The initial conditions for batch settling are a = a,, a constant, and v = 0 at time 
zero. The solution of the equations of motion within the mixture domain follows 
from the recognition that subsequently 

a = a ( t ) ,  (3.3) 

(3.4) 

(3.5) 

v - v  = f ( t ) ,  v . v ,  =f&). (3.6) 

av 
a2 

k . v = 0 ,  -- - 0, 

V X U = 0 = w(t) k ,  v X 0 ,  = OR = W R ( t )  k ,  

The velocity is two-dimensional and independent of the vertical coordinate. The 
substitution of these forms in (2.6) and (2.7) gives 

and 

se2p a( 1 -a)  
f ( t )  = ~ _ _ _  f R ( %  R, l+ea  

I@ 1 +€a 
a' ( t )  = - -a ( l -a ) fR( t )  = --f(t). 

R, E 

(3.7) 

The vertical component of the vorticity equation (3.1 a )  implies 

(3.9) 
P"e"( 1 + 8 )  a( 1 - a )  

f R ( t )  WR(t ) .  R,( 1 + R 0 f w ' ( t ) + w ( t ) f ( t ) ] + 2 f ( t )  = -2 

Lastly, the divergence and curl of (2.12) yield 

( 1 f c ) p ( 1 - a ) ( R ~ f k ( t ) - 2 w R ( t ) )  = (3.10) 
jRG)+ D(a)  ( 1  +€a)  

Equation (2.9), the more exact constitutive law for the relative velocity v,, does 
now allow V - v ,  to be expressed as a function of time alone. However it does provide 
a formula for wR( t )  which, by using (3.9),  can be written as: 

The O(RE) discrepancy between the two equations for w,(t), (3.11 a ,  b )  is indicative of 
the error involved when inertial terms are neglected in the rule for the relative 
velocity. 

There are five equations for the five variables a( t ) ,  f(t) ,  fR(t) ,  w( t ) ,  wR(t),  and the 
system is well posed and readily integrated subject to the initial conditions 

a(0) = a(), f(0) =fR(o) = w ( 0 )  = w x ( 0 )  = 0. (3.12) 

Moreover since time does not appear explicitly, four of the unknowns can be written 
as functions of the fifth, the natural choice being 

f k ) ,  fda), w ( a ) ,  %(a) ;  

(3.8) is then used to find a( t ) .  
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Integration of the vorticity equation (3.9) (or more directly from (3.1 b ) )  yields 

2e a-a, 2plel 
w=-- +-(l+€) (1  +€a) 

R, 1 +mo R, 
(3.13) 

which expresses the production of potential vorticity f.[/l +€a. In  practice, 
parameters e,/3 and R, are usually small (in varying degrees), and the integral in 
(3.13), which originates from the diffusion stress tensor, is readily shown to be 
O(Pc/R,) and therefore of negligible importance in most circumstances. A simpler 
formula for relative vorticity is then a consequence of the strict conservation of 
potential vorticity : 

2€ a-a,  
R, 1 +€ao 

w = - - ,  (3.14) 

At present this is probably as accurate as any other given the lack of experimental 
information about a rotating mixture with /? moderate, and the ad hoe nature of the 
constitutive law for the relative velocity. 

Estimates of the magnitudes of the primary variables are 

and clearly the choice R, = 1 ~ 1  (or R, = lelao if a, is also very small) properly 
characterizes the velocity field in these problems of batch separation. Examination 
of the system of equations reveals that  except for a very short, O(R,/3), time 
transient when adjustments to the initial conditions are made, the time derivatives 
in (3.10) and (3.11) can be neglected, which allows f R  and wR to be determined 
algebraically. (These time derivatives probably have little physical significance 
anyway and were included until now to construct a well-posed initial-value problem. 
At best the incorporation of these terms might be indicative of processes not yet 
recognized.) It follows that, to O(Ri), 

fR zz 281% (k) ( 1  + R, w ) ,  wR zz - 2(1-aa)p (1  +€) fR ,  (3.15) W )  D(a) (1 + €a)  

where 
4 ( 1 + ~ ) ~ / 3 ~ ( 1 - a ) ~  -' 1 -  

The first of these, together with (3.14), may be used to rewrite (3.8) as an equation 
for a alone. Integration to find a(t)  allows wE, w ,  fR, f to be determined since each has 
been written solely and explicitly as a function of the volume fraction. If all 
parameters are small and second-order quantities p2, E ~ I Z P  are neglected, the 
result is 

(3.16) 

the integral of which must be still obtained numerically. Since the velocity field does 
not produce a spatial variation of the volume fraction in problems of bulk separation, 
the timescale here is in units of 1//3 or 1/€/3S2, dimensionally. This is just the 
characteristic time for a particle to settle in a centrifugal force field. 

If the mixture is also dilute a 4 1, and p,, > pc or s = 1 ,  then (3.16) is easily 
integrated : 

a = a e-Vt, (3.17) 
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FIGURE 1 .  (a) Volume fraction a versus time, with ( b )  w ,  and (c) f versus a for typical values of 
the basic parameters a, = 0.05, and R, = €a,: (i) E = 0.1, p = 0.01; (ii) E = 1, p = 0.1; (iii) E = 0.1, 
p =  1. 

so that 
# = -- 2a0 (1 - eP2Pt), 

1 + €aO (3.18) 

(3.19) 

A negative relative vorticity is produced in the separation process which in the 
axisymmetric container is equivalent to the retrograde rotation found previously. 
Equations (3.14), (3.8) and (3.15) imply more generally that a negative relative 
vorticity is always produced in the separation process, whether the density difference 
is positive or negative. The vorticity deficit is eventually adjusted by the ordinary 
viscous spin-up process of a homogeneous fluid which occurs on the O(E-a) 
timescale. 

Comparisons of the exact numerical solution and the simpler approximate 
formulas for volume fraction (3.17), vorticity (3.14), and divergence ( 3 . 7 )  (with 
f E  = 2 )  are shown in figure 1 for the representative values a0 = 0.05, E = 0.1, 1, 
p = 0.1, 1 and R, = eaO. As anticipated, the deviation is appreciable only for /3 
large. 
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4. The velocity field 
The equations of motion governing bulk separation of an initially homogeneous 

mixture in a ‘long’ cylinder reduce to 

v-v =f(a),  (4.1) 
v x v = o ( a ) i ,  (4.2) 

where the mass-averaged velocity is a two-dimensional vector, k .  v = 0, that is 
independent of vertical distance, av /az  = 0, and functionsf(a), w(a) ,  a(t)  are known. 
If a new vector function q is defined by 

u = q+Br(f(a)i+w(a)e^), (4.3) 

then it follows that v - q  = 0, (4.4) 

v x q = 0 .  (4.5) 

q = V@ = v x Y i ,  Therefore 

and .F = @ + i Y  

is an analytic function of the complex variable x = x + iy. 
Let 

95 = hl, q y  =E.q, 
qr = i . 9 ,  = 8.9 

denote the components of (any) vector q in Cartesian and cylindrical coordinates. It 
follows that the complex-conjugate velocity 

is also an analytic function, but v,-ivy is not because by definition 

v, - ivy = +( f (  a) - w (a) i)x - q5 - iq,. (4.8) 

It is also convenient to express the last equation in terms of the velocity components 
in cylindrical coordinates. Since 

v,-ivs = (vs-ivy) eis (4.9) 

the result is v,-iv e - - 1 2 8  io (f(a)-w(cOi)X+qr-iiqls (4.10) 

and r(qr-iqs) = r eisW = x W ( x ) .  (4.11) 

With Q = rqr, and r = rq,, the last equation shows that Q -  i T  is also an analytic 
function of x .  

The problem of batch settling in a centrifugal force field that was formulated in $2 
has now been reduced to the determination of an analytic function W ( x )  which 
satisfies certain prescribed boundary conditions. The specification of these conditions 
is difficult because the region occupied by the mixture, as distinct from that of 
sediment or purified fluid, changes in time. If, initially, the particle velocity v, is 
directed towards a solid boundary with outward unit normal i i ,  i i - v ,  > 0, then 
sediment accumulates there and a kinematic shock develops. Likewise, if f i e  vD < 0, 
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a discontinuity is required between mixture and the purified continuous fluid phase 
that is adjacent to the wall. The loci of these shocks are an intrinsic part of the 
separation process. The proper procedure is to require u = 0 a t  the container wall, or 
u - i i  = 0 for an inviscid fluid, and then to determine the position of any and all 
interfaces by utilizing the shock conditions for mass and momentum. However, this 
is a very hard programme to implement unless there is complete axial symmetry 
(Greenspan 1983) or the interfaces actually remain close enough to the boundaries to 
be indistinguishable from them. This can happen when the mixture is dilute and 
there is a minimal amount of sediment or the purified fluid moves mainly in a 
boundary layer. In  these situations, simple but accurate approximations introduced 
by Schneider (1982), were based on the assumptions that the thin sediment layer 
carries almost no volume flux, so that 

on that part of the solid boundary, while 

(4.12) 

(4.13) 

wherever a boundary-layer current of pure fluid forms. Some of the shock positions 
are fixed this way, as one and the same with the solid boundaries. It is advantageous 
and a s i s t e n t  with the accuracy of these approximations to employ a somewhat 
simpler constitutive law (Greenspan & Ungarish 1985) because this allows explicit 
boundary conditions to be set on the mass-averaged velocity, v :  

= rUR(-a)r"+rVR(a)O = $ ( f R i + w E O ) .  (4.15) 

As an example of some technological interest, consider bulk separation in a long, 
sectioned, cylindrical centrifuge, the semicircular domain shown in figure 3. In  
particular, let the particles be heavier than the fluid in which they are suspended so 
that s = 1 (in which case no purified core of fluid develops in the full cylinder). The 
boundary condition (4.13) applies to the section 0 = x ,  whereas (4.12) is imposed on 
8 = 0 and the circumference r = a. The analysis is much facilitated using cylindrical 
coordinates and components of velocity. I n  terms of the analytic function defined in 

Q - X =  r(p,-ip,) = xV(X) 

and the relative velocity as given in (4.151, the boundary conditions can be written 
as follows : 

or 

e'p -a( 1 - a )  r 
onB=O,v  -- VR(-a) '- R, l + e a  

(4.16) 

ezp -a(l --a) a 
o n r = a ,  v = -  U R ( 4  R, l+e-a 
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R R 
FIGURE 2. Particle and mass-centred velocity components versus radial distance along five rays : 
B = 0,45", go", 135", 180", with E = 0.1, /3 = 0.1, a. = 0.05, a = 0.025 and R, = €ao. Radial velocity 
components are sequenced monotonically for increasing angle B ; the solid line corresponds to 
B = O .  

or 

or 

(4.17) 

(4.18) 

The function Q - iT must be found that is analytic in the semicircle and assumes 
the prescribed values shown on the segments of the bounding contour. With 
6 = %/a,  this function is 

&-ir= x W ( X )  = ( B - A ) c 2  log<+ixAc 
x 

(A l o g ( 1 - ~ ) - B l o g ( l + < )  +C. (4.19) 1 
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R 

FIGURE 3. Particle velocity vectors at the parameter values of figure 2. 

The components of the mass-averaged velocity are recovered from (4.11) ; 

1 
r 

w, - iw, = t r ( f (a)  - o(a)  i) + - (& - iT), (4.20) 

and the definitions off(a), w(a) ,  A,  B, and C. Of course, the formulas are complicated, 
but nonetheless, they are the explicit, exact solution of the original equations of 
motion with the boundary conditions imposed. Figure 2 shows the particle and mass- 
centred velocity components along five rays for the representative values e = 0.1, 
p = 0.1, a,, = 0.05, a = 0.025. The azimuthal velocity component changes sign a t  
about the midcircle position, but particles are always directed outwards as shown in 
figure 3. A weak source if evident at the origin. The O(P)-flow in the boundary layer 
that must be a consequence of the volume-flux condition (4.13) implies the formation 
and growth of a core of purified fluid, but this aspect is not considered here! 

Procedures exist to obtain solutions in different domains but the results are not 
usually in a form that involves only simple functions. With different values for A ,  B 
and C, (4.19) also gives the solution to the problem with, say v * h  = 0 on the 
periphery. This enables the effects of particular conditions to be assessed and 
compared. These and other matters will be discussed elsewhere. 

5. Conclusion 
The vorticity produced in the bulk separation of an initially homogeneous mixture 

is strongly linked to the volume fraction of the dispersed phase. If endwall effects are 
neglected, the vorticity in the mixture is a simple function of the volume fraction, a, 
which itself depends only on time. This allows reduction of the complex governing 
equations for this class of motions to a two-dimensional potential-flow problem 
whose exact solution can even be given in closed form in certain configurations. Any 
occurrence and propagation of a kinematic shock that separates purified fluid from 
mixture makes the solution more difficult to obtain because the locus of the jump 
discontinuity is essential and this calculation is intrinsically nonlinear in character. 

The postulated form of solution equations (3.3)-(3.6) also satisfies the viscous- 
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stress terms, EV x V - I, but fails if advection v. Vv is included in the constitutive law 
for the relative velocity v , .  These were the O(R:) quantities dropped a t  the 
outset. 

Endwall effects of the Ekman layers can be incorporated in the theory (Dahlkild 
and Greenspan 1987), the analysis of which then reverts to a perturbation procedure 
whose lowest-order approximation for the interior flow is essentially that given 
here. 

This research was partially supported by the National Science Foundation, Grant 
Number 8519764-DMS. 
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